Платону принадлежит разработка некоторых важных методологических проблем математического познания: аксиоматическое построение математики, исследование отношений между математическими методами и диалектикой, анализ основных форм математического знания. Так, процесс доказательства необходимо связывает набор доказанных положений в систему, в основе которой лежат некоторые недоказуемые положения. Тот факт, что начала математических наук "суть предположения", может вызвать сомнение в истинности всех последующих построений. Платон считал такое сомнение необоснованным. Согласно его объяснению, хотя сами математические науки, "пользуясь предположениями, оставляют их в неподвижности и не могут дать для них основания", предположения находят основания посредством диалектики. Платон высказал и ряд других положений, оказавшихся плодотворными для развития математики. Так, в диалоге "Пир" выдвигается понятие предела; идея выступает здесь как предел становления вещи.
Критика, которой подвергались методология и мировоззренческая система Платона со стороны математиков, при всей своей важности не затрагивала сами основы идеалистической концепции. Для замены разработанной Платоном методологии математики более продуктивной системой нужно было подвергнуть критическому разбору его учение об идеях, основные разделы его философии и как следствие этого = его воззрение на математику. Эта миссия выпала на долю ученика Платона - Аристотеля.
СИСТЕМА ФИЛОСОФИИ МАТЕМАТИКИ АРИСТОТЕЛЯ
К. Маркс назвал Аристотеля (384-322 гг. до н.э.) "величайшим философом древности". Основные вопросы философии, логики, психологии, естествознания, техники, политики, этики и эстетики, поставленные в науке Древней Греции, получили у Аристотеля полное и всестороннее освещение. В математике он, по-видимому, не проводил конкретных исследований, однако важнейшие стороны математического познания были подвергнуты им глубокому философскому анализу, послужившему методологической основой деятельности многих поколений математиков.
Ко времени Аристотеля теоретическая математика прошла значительный путь и достигла высокого уровня развития. Продолжая традицию философского анализа математического познания, Аристотель поставил вопрос о необходимости упорядочивания самого знания о способах усвоения науки, о целенаправленной разработке искусства ведения познавательной деятельности, включающего два основных раздела: "образованность" и "научное знание дела". Среди известных сочинений Аристотеля нет специально посвященных изложению методологических проблем математики. Но по отдельным высказываниям, по использованию математического материала в качестве иллюстраций общих методологических положений можно составить представление о том, каков был его идеал построения системы математических знаний.
Исходным этапом познавательной деятельности, согласно Аристотелю, является обучение, которое "основано на (некотором) уже ранее имеющемся знании... Как математические науки, так и каждое из прочих искусств приобретается (именно) таким способом". Для отделения знания от незнания Аристотель предлагает проанализировать "все те мнения, которые по-своему высказывали в этой области некоторые мыслители" и обдумать возникшие при этом затруднения. Анализ следует проводить с целью выяснения четырех вопросов: "что (вещь) есть, почему (она) есть, есть ли (она) и что (она) есть".
Основным принципом, определяющим всю структуру "научного знания дела", является принцип сведения всего к началам и воспроизведения всего из начал. Универсальным процессом производства знаний из начал, согласно Аристотелю, выступает доказательство. "Доказательством же я называю силлогизм, - пишет он, - который дает знания". Изложению теории доказательного знания полностью посвящен "Органон" Аристотеля. Основные положения этой теории можно сгруппировать в разделы, каждый из которых раскрывает одну из трех основных сторон математики как доказывающей науки: "то, относительно чего доказывается, то, что доказывается и то, на основании чего доказывается". Таким образом, Аристотель дифференцированно подходил к объекту, предмету и средствам доказательства.
Существование математических объектов признавалось задолго до Аристотеля, однако пифагорейцы, например, предполагали, что они находятся в чувственных вещах, платоники же, наоборот, считали их существующими отдельно. Согласно Аристотелю:
1. В чувственных вещах математические объекты не существуют, так как "находиться в том же самом месте два тела не в состоянии";
2. "Невозможно и то, чтобы такие реальности существовали обособленно".