Философия
Меню сайта
Статистика

Задача научного познания, согласно Демокриту, чтобы наблюдаемые явления свести к области "истинного сущего" и дать им объяснение исходя из общих принципов атомистики. Это может быть достигнуто посредством совместной деятельности ощущений и разума. Гносеологическую позицию Демокрита Маркс сформулировал следующим образом: "Демокрит не только не удалялся от мира, а, наоборот, был эмпирическим естествоиспытателем". Содержание исходных философских принципов и гносеологические установки определили основные черты научного метода Демокрита: а) В познании исходить от единичного; б) Любые предмет и явление разложимы до простейших элементов (анализ) и объяснимы исходя из них (синтез) ; в) Различать существование "по истине" и "согласно мнению"; г) Явления действительности - это отдельные фрагменты упорядоченного космоса, который возник и функционирует в результате действий чисто механической причинности.

Математика по праву должна считаться у Демокрита первым разделом собственно физики и следовать непосредственно за каноникой. В самом деле, атомы качественно однородны и их первичные свойства имеют количественный характер. Однако было бы неправильно трактовать учение Демокрита как разновидность пифагореизма, поскольку Демокрит хотя и сохраняет идею господства в мире математической закономерности, но выступает с критикой априорных математических построений пифагорейцев, считая, что число должно выступать не законодателем природы, а извлекаться из нее. Математическая закономерность выявляется Демокритом из явлений действительности, и в этом смысле он предвосхищает идеи математического естествознания. Исходные начала материального бытия выступают у Демокрита в значительной степени как математические объекты, и в соответствии с этим математике отводится видное место в системе мировоззрения как науке о первичных свойствах вещей. Однако включение математики в основание мировоззренческой системы потребовало ее перестройки, приведения математики в соответствие с исходными философскими положениями, с логикой, гносеологией, методологией научного исследования. Созданная таким образом концепция математики, называемая концепцией математического атомизма, оказалась существенно отличной от предыдущих.

У Демокрита все математические объекты (тела, плоскости, линии, точки) выступают в определенных материальных образах. Идеальные плоскости, линии, точки в его учении отсутствуют. Основной процедурой математического атомизма является разложение геометрических тел на тончайшие листики (плоскости) , плоскостей - на тончайшие нитки (линии) , линий - на мельчайшие зернышки (атомы) . Каждый атом имеет малую, но ненулевую величину и далее неделим. Теперь длина линии определяется как сумма содержащихся в ней неделимых частиц. Аналогично решается вопрос о взаимосвязи линий на плоскости и плоскостей в теле. Число атомов в конечном объеме пространства не бесконечно, хотя и настолько велико, что недоступно чувствам. Итак, главным отличием учения Демокрита от рассмотренных ранее является отрицание им бесконечной делимости. Таким образом он решает проблему правомерности теоретических построений математики, не сводя их к чувственно воспринимаемым образам, как это делал Протагор. Так, на рассуждения Протагора о касании окружности и прямой Демокрит мог бы ответить, что чувства, являющиеся отправным критерием Протагора, показывают ему, что чем точнее чертеж, тем меньше участок касания; в действительности же этот участок настолько мал, что не поддается чувственному анализу, а относится к области истинного познания.

Руководствуясь положениями математического атомизма, Демокрит проводит ряд конкретных математических исследований и достигает выдающихся результатов (например, теория математической перспективы и проекции) . Кроме того, он сыграл, по свидетельству Архимеда, немаловажную роль в доказательстве Эвдоксом теорем об объеме конуса и пирамиды. Нельзя с уверенностью сказать, пользовался ли он при решении этой задачи методами анализа бесконечно малых. А. О. Маковельский пишет: "Демокрит вступил на путь, по которому дальше пошли Архимед и Кавальери. Однако, подойдя вплотную к понятию бесконечно малого, Демокрит не сделал последнего решительного шага. Он не допускает безграничного увеличения числа слагаемых, образующих в своей сумме данный объем. Он принимает лишь чрезвычайно большое, не поддающееся исчислению вследствие своей огромности число этих слагаемых".

Выдающимся достижением Демокрита в математике явилась также его идея о построении теоретической математики как системы. В зародышевой форме она представляет собой идею аксиоматического построения математики, которая затем была развита в методологическом плане Платоном и получила логически развернутое положение у Аристотеля.

ПЛАТОНОВСКИЙ ИДЕАЛИЗМ

Сочинения Платона (427-347 гг. до н.э.) - уникальное явление в отношении выделения философской концепции. Это высокохудожественное, захватывающее описание самого процесса становления концепции, с сомнениями и неуверенностью, подчас с безрезультатными попытками разрешения поставленного вопроса, с возвратом к исходному пункту, многочисленными повторениями и т.п. Выделить в творчестве Платона какой-либо аспект и систематически изложить его довольно сложно, так как приходится реконструировать мысли Платона из отдельных высказываний, которые настолько динамичны, что в процессе эволюции мысли порой превращаются в свою противоположность.


Философия © 2008